[hihocoder1554]Shortest Nore0061
/ / 阅读耗时 4 分钟 一个比较有意思的DP类字符串问题。涉及到子序列问题,故为了弥补漏洞,写这个题。
题目描述
Nore0061 is a weird Nore. Just like all Nores, Nore0061 is a string lover. Nore0061’s given name is string A and the family name is string B. One day Nore King sends Nore0061 a strange alphanumeric string S, and ask Nore0061 to find the shortest substring S’ of S such that S’ can partition into three nonintersecting subsequences {A’, B’, C’} so that A’ = A and B = B’.
输入输出格式
输入格式
The first line contains one single alphanumeric string A(1 ≤ |A| ≤ 100). The second line contains one single alphanumeric string B(1 ≤ |B| ≤ 100). The third line contains one single alphanumeric string S(1 ≤ |S| ≤ 3000).
输出格式
One single integer denoting the length of such shortest substring. If no such substring, just print -1 instead.
输入输出样例
Sample input
Tw
yj0mJXRiq
NuRj4mRKyTcwFKj0KmCJAFpXRiHGNq
Sample output
22
题解
考虑动态规划。规定$dp[x][y][z]$表示:若串A前x位,串B前y位是串S前z位的两个不相交子序列,则为首位匹配的最大位置,否则为0。这样可以比较容易地推出dp数组。时间复杂度$O(l_1l_2l_3)$,$l_1、l_2、l_3$是三个串的长度。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
using namespace std;
char a[102], b[102], str[3005];
int dp[102][102][3005];
int l1, l2, len;
inline void getDP(int l = 1, int r = len) {
dp[1][0][l] = str[l] == a[1], dp[0][1][l] = str[l] == b[1];
for (int i = l + 1; i <= r; i++) {
for (int j = 0; j <= l1; j++) {
for (int z = 0; z <= l2; z++) {
if (j) {
if (str[i] == a[j])dp[j][z][i] = max(dp[j][z][i - 1], j == 1 && z == 0 ? i : dp[j - 1][z][i - 1]);
else dp[j][z][i] = dp[j][z][i - 1];
}
if (z) {
int x = dp[j][z][i];
if (str[i] == b[z])dp[j][z][i] = max(dp[j][z][i - 1], j == 0 && z == 1 ? i : dp[j][z - 1][i - 1]);
else dp[j][z][i] = dp[j][z][i - 1];
dp[j][z][i] = max(dp[j][z][i], x);
}
}
}
}
}
int main() {
cin >> (a + 1) >> (b + 1) >> (str + 1);
l1 = strlen(a + 1), l2 = strlen(b + 1), len = strlen(str + 1);
getDP();
int ans = 30000;
for (int i = 1; i <= len; i++)
if (dp[l1][l2][i])ans = min(ans, i - dp[l1][l2][i] + 1);
cout << (ans == 30000 ? -1 : ans);
return 0;
}